Les sciences de la nature, c’est du calcul, et non pas de vagues « histoires » !

Je m'évertue, depuis des années, à expliquer que les sciences de la nature moderne marchent par quantification des phénomènes, expériences et théorisations... mais pas n'importe comment.

D'abord, l'objectif est de chercher les mécanismes des phénomènes, ce qui va de pair avec l'exploration du monde, la découverte d'objets, de concepts...
Cette recherche se fait de façon très coordonnée, de la façon suivante :
1. identification du phénomène que l'on va étudier
2. caractérisation quantitatives (des mesures, des mesures, des mesures) des divers aspects des phénomènes retenus
3. réunion des données de mesure en "lois", c'est-à-dire en équations
4. recherche de "théories", par l'intégration de plusieurs lois et l'introduction de concepts nouveaux (l'électron, le neutrino, la tétravalence du carbone, l'aromaticité...)
5. recherche de conséquences testables des théories
6. tests expérimentaux de ces "prévisions"
7. et ainsi de suite à l'infini, parce que toute théorie, étant un modèle réduit de la réalité, est nécessairement insuffisante, et doit être améliorée.

Tout cela étant dit, on arrive, à une époque donnée, à un "récit", du type "L'eau liquide est faite d'objets identiques, les molécules d'eau, entre lesquelles il n'y a rien (du vide)".
Et quelqu'un qui étudie les sciences doit évidemment apprendre un tel "récit", au lieu de "L'eau est une substance élastique", comme au Moyen Âge. D'ailleurs, j'ajoute immédiatement que cela ne suffit pas d'apprendre la phrase "L'eau liquide est faite d'objets identiques, les molécules d'eau, entre lesquelles il n'y a rien (du vide)" : cela est un récit de vulgarisation, mais, quand on apprend les sciences de la nature, on doit apprendre les quantifications qui vont avec cette idée, à savoir que une mole d'eau (18 g) contient 600000000000000000000000 molécules d'eau, que ces molécules contiennent un atome d'oxygène et deux atomes d'hydrogène, et ainsi de suite. Sinon, on n'apprend pas les sciences ; on reste à de la vulgarisation qui ne donne pas une compétence, pas un métier.

D'où un twitt que j'avais fait, et où je m'étonnais d'avoir rencontré des étudiants de sciences des aliments qui croyaient qu'il y avait de l'air entre les molécules d'eau.
Après ce twitt, un correspondant a pris la "défense" des étudiants ignorants :
" Je viens de lire votre tweet sur votre étudiant de master qui pense qu'il y a de l'air entre les molécules d'eau liquide. D'une certaine manière je le comprends : je me pose moi-même beaucoup de questions depuis que j'ai regardé les vidéos (donnant une modélisation visuelle de l'eau) que vous aviez un jour mises en lien."

Ici, pour ceux qui ne sont pas au courant, il faut expliquer que j'avais donc déjà présenté la constitution de l'eau, et j'avais expliqué (récit de vulgarisation) que l'eau était fait de d'objets tous identiques que l'on nomme des molécules d'eau. Il est d'usage, dans l'enseignement, de "représenter" ces molécules et il y a plusieurs représentation :
- soit simplement des lettres pour dénommer la nature des atomes qu'on relie par des bâtons pour figurer les liaisons chimiques (qui sont en réalité en réalité des nuages d'électrons),
- soit des boules qui sont censées correspondre à des parties de l'espace où les électrons se répartissent autour des atomes
- soit des surfaces où les molécules voisines n'entrent pas (dans des conditions physiques particulières)
- etc.
Oui, "etc.", car on pourrait tout aussi bien représenter les molécules par des tableaux de nombres, ce qui est fait d'ailleurs en modélisation moléculaire. Ou encore par des fonctions d'onde, quand on fait de la mécanique quantique...
Dans tous les cas, il s'agit de représentation, c'est-à-dire de donner à voir mais on aurait bien tort de croire que les objets que l'on représente sont effectivement les objets tels qu'ils sont. Et je prends souvent comme exemple, pour expliquer cela, celui d'un cylindre : quand on le regarde selon son axe, on voit un disque, mais quand on le regarde par le côté, on voit un rectangle. Pour autant, le cylindre n'est ni un disque ni un rectangle, mais bien un cylindre, et d'ailleurs, on peut tout aussi bien ne pas le voir avec les yeux mais avec une équation, celle du cylindre.

Oui, j'avais donc moi-même fourni à mes amis des vidéos qui montraient des modélisations moléculaire de molécules d'eau. Il y avait donc quelque chose à voir... sur un fond noir. On aurait pu le faire blanc, mais il était plus juste de le faire noir, car il n'y a rien entre les molécules d'eau : du vide.

Et cela m'amène à une autre réponse fausse que font les étudiants, quand on dessine des molécules d'eau dans de l'eau liquide : interrogé sur ce qu'il y a entre les molécules d'eau, certains disent "des liaisons hydrogène".
Sur les modélisations moléculaires que j'avais données, on voit effectivement des pointillés, sur certaines, et il est vrai que les molécules d'eau s'attirent, raison d'ailleurs pour laquelle l'eau liquide reste liquide, au lieu que les molécules se dispersent partout. Oui, les molécules (qui bougent) sont déviées d'une trajectoire initiale par les "interactions" entre les molécules, tout comme la Terre ne part pas en ligne droite dans l'espace, mais est attirée par le Soleil.
Dire qu'il y a des liaisons hydrogène entre les molécules d'eau, ce serait comme dire qu'il y a des forces de gravitation entre la Terre et le Soleil, ou comme dire qu'il y a des forces magnétiques entre deux aimants séparés de quelques centimètres.

Ces forces ? Nous en avons les expressions quantitatives, les équations, et c'est précisément cela, l'apport des sciences de la nature : au lieu de tenir un discours vague, nous avons des équations qui s'appliquent avec une précision parfois extraordinaire. Et c'est d'ailleurs une raison pour laquelle je me lève le matin : quelle extraordinaire correspondance entre les équations et ce que nous mesurons !
Mais, hélas, ces équations sont bien difficiles à communiquer à un public qui n'a pas de compétences mathématiques... de sorte que nous faisons des récits, qui n'ont, par rapport à des récits mythiques (les dieux grecs, les feux follets, les fées, etc.) que le bénéfice d'être réfutables... et de correspondre à des équations, des calculs, qui correspondent très précisément aux faits expérimentaux.

Mon interlocuteurs continue :
Je me pose des questions en particulier sur les interactions entre molécules, interactions qui expliquent leurs mouvements. J'ai bien compris qu'il y avait des liens hydrogènes (donc des forces électrostatiques si je ne m'abuse). Ces forces-là sont les plus faciles à comprendre. Elles sont marquées par des traits dans les vidéos. Je me doute qu'il y a des forces de gravitation. Mais j'imagine également qu'il y a des chocs. Et ces chocs ne sont absolument pas notés dans les vidéos. On a l'impression que les molécules ne se touchent pas. Or avant de voir ces vidéos, pour moi c'étaient ces interactions qui expliquaient le mouvement des molécules.

Des "chocs" ? La question à se poser est "qu'est-ce qu'un choc, pour des molécules" ? De même, la "surface de l'eau" n'est pas une ligne que l'on trace, puisqu'il y a des molécules qui partent, d'autres qui reviennent, et tout cela est en mouvement. La ligne que l'on peut dessiner est notre perception à l'oeil nu... mais n'oublions pas que la physique sonde jusqu'aux quarks qui constituent les particules qui constituent les noyaux des atomes qui eux même entrent dans la constitution des molécules. Et tout cela avec des caractéristiques quantitativement décrites par des équations. J'insiste : des équations qui sont ce que les étudiants en sciences doivent apprendre !

D'ailleurs, j'ajoute que les forces de gravitation dont parle notre ami sont TRES faibles par rapport aux liaisons hydrogène. Et cette extrême faiblesse relative est une composante essentielle de la description... sans quoi on devrait voir les molécules "tomber".

Oui, comme dit notre ami : "Comme quoi réussir à donner un modèle suffisamment parlant et en même temps suffisamment précis pour avoir une idée juste d'un phénomène physique ou chimique est bien compliqué.". Oui, absolument, cela est bien compliqué, et voilà pourquoi j'ai la plus grande admiration pour mes prédécesseurs et pour les meilleurs de mes collègues : la science ne s'apprend pas, et ne se fait pas en claquant des doigts à la terrasse d'un bistrot, mais, au contraire, par de l'étude ! Seul dans un cabinet de travail, à apprendre, apprendre et apprendre encore !

 

On me dit ensuite "L'erreur commise par votre élève n'est pas une erreur totalement déraisonnable. Pourquoi n'y aurait-il pas de l'air entre les molécules d'eau liquide. Il y en a bien entre les molécules d'eau gazeuse dans l'atmosphère. Bien sûr les physiciens et les chimistes savent qu'il n'y en a pas. Mais a priori rien n'empêcherait qu'il en fût autrement. Comment savent-ils qu'il n'y a pas d'air d'ailleurs ? Il y a eu des expériences faites en ce sens dans l'histoire des sciences ? Le modèle de l'eau liquide qu'ils ont en tête ne le permet pas ?"

En réalité, oui, il peut y avoir de l'air "dissous" dans l'eau, mais c'est trompeur et un peu fautif de le dire ainsi : il y a des molécules de diazote ou de dioxygène dissoutes dans l'eau, dispersées au milieu des molécules d'eau, et on connaît même depuis plus d'un siècle une "loi" qui décrit la relation entre la pression du gaz au dessus du liquide et la quantité de molécules de ce gaz en solution.
Mais je vous assure que, en Master, soit après 5 années d'études supérieures avec de la chimie, de la physique, des mathématiques, ce n'est vraiment pas merveilleux de ne pas avoir de bon "modèle" de l'eau !

Et notre correspondant de conclure "Cela montre en tout cas que dans la conscience que nous avons de la physique comme dans celle des autres sciences rien n'est inné tout est acquis."
Mais oui, mille fois oui ! Les sciences de la nature sont une conquête extraordinaire, l'honneur de l'esprit humain. Oui, sans connaissance scientifique, nous serions comme au Moyen Âge, et nos ordinateurs, aliments, vaccins, médicaments, peintures, fusées, électricité dans les foyers, eau potable, etc. sont des résultats d'applications techniques des sciences. De ces sciences qu'il faut apprendre, longuement, patiemment, avant de pouvoir contribuer à leur avancement.
Et, je le répète, cela ne se fait pas en claquant des doigts. Je rappelle d'ailleurs ma métaphore de la balance, avec le travail d'un côté et les prétentions de l'autre : s'il y a plus de prétentions que de travail, on est prétentieux, mais si l'on a plus de travail que de prétentions, on est travailleur... et l'on n'a d'ailleurs pas de temps pour être prétentieux. Ajoutez à cela que quelqu'un qui sait quelque chose est quelqu'un qui l'a appris, et vous verrez pourquoi je préfère voir, en Master, des étudiants qui savent qu'il y a du vide entre les molécules d'eau.
Oui, les connaissances scientifiques s'apprennent ! Et ce ne sont pas des récits comme on en fait aux enfants le soir à la veillée : tout est équations !

Publier un commentaire